spectrum of liquid CF₃SO₂OCl.

The band at 336 cm⁻¹ for CF₃SO₂OCl is assigned to the SCF₁ wag by analogy to this same assignment for the bands at 333 and 340 cm⁻¹ in CF₃SO₂F and CF₃SO₂OH, respectively.⁴³ The SO₂ twist for CF_3SO_2OCI either is too weak to observe or is degenerate with the SCF_3 wag at 336 cm⁻¹. The SO_2 twist in FSO₂OCl is assigned to a weak band at 389 cm⁻¹. The band at 302 cm⁻¹ for CF₃SO₂OCl is assigned to the CS stretch by analogy to CF₃SO₂F and CF₃SO₂OH where the CS stretch is assigned at 301 and 312 cm^{-1} , respectively.^{38,43} Then the band at 321 cm⁻¹ in CF₃SO₂OCl can be assigned to the CF_3 rock of A' symmetry for C_s . It would, of course, be possible to reverse our CS stretch and CF₃ rock assignments. The bands are of almost equal intensity (the third and fourth most intense bands in the Raman spectrum) with the 302-cm⁻¹ band being slightly more intense and having the lower depolarization ratio. It seems reasonable for the CS stretch, ^{38,43} which would be polarized in any case, to have a lower depolarization ratio than the CF₃ rock which is depolarized in C_{3v} local symmetry but becomes polarized under C_s local symmetry. Consequently, we have chosen this assignment.⁵¹

(51) In CF₃SO₂OCl, coupling could occur among three modes giving bands between 300 and 350 cm⁻¹ so the situation could be even more complex than in CF₃SO₂F and CF₃SO₂OH. However, in the absence of further information we prefer to retain our description of $\delta(SCF_3)$ and $\nu(C-S)$ with proper qualification of the later³⁸ as done in CF₃SO₂F and CF₃S-O₂OH⁴³ and list the band at 321 cm⁻¹ as a CF₃ rock.

The band at 211 cm⁻¹ in CF₃SO₂OCl seems too intense for a CF₃ rock of A" symmetry under C_s local symmetry and is assigned to the SOCI bend.⁵⁰ A band at 212 cm⁻¹ with very similar relative intensity is so assigned in FSO₂OC1.⁵⁰ Either the band at 184 cm⁻¹ or the shoulder at ~ 198 cm⁻¹ must be the CF₃ rock. The shoulder on the Rayleigh line near 90 cm⁻¹ must surely be a torsion. Since no evidence for a band assignable to the CF₃ torsion was obtained for CF₃SO₂F or CF_3SO_2OH , we assume the CF_3 torsion is too weak to observe and assign 90 cm^{-1} as the OCl torsion. Although no OCl torsion has been found in FSO₂OCl, an OF torsion is assigned at 137 cm⁻¹ in $FSO_2OF^{3,42}$. Since the 184-cm⁻¹ band is near twice 90 cm⁻¹ and $\Delta \nu = 2$ transitions for torsions may be more prominent than $\Delta v = 1$ transitions,⁵² we tentatively assign the 184-cm⁻¹ band as 2 $\tau_{\rm OCl}$. Then the shoulder near 198 cm⁻¹ remains to be assigned to the CF₃ rock of A" symmetry for local C_s symmetry of the CF₃ group in CF₃SO₂OCl.

Acknowledgment. Support of this research by the National Science Foundation is gratefully acknowledged. D.D.D. thanks the 3M Co. for a generous sample of CF_3SO_2F .

Registry No. CF₃SO₂OCl, 65597-24-2; CF₃SO₂OBr, 70142-16-4; CF₃SO₂OCF₃, 3582-05-6; CF₃SO₂OSO₂OCF₃, 72214-10-9; CF₃SO₂F, 335-05-7; CF₃SO₂OH, 1493-13-6.

Contribution from the Chemical Research Institute of Nonaqueous Solutions, Tohoku University, Katahira, Sendai 980, Japan

Infrared and Raman Spectra of Ammonium, Potassium, Rubidium, and **Cesium Metavanadates**

SHINJI ONODERA and YUSAKU IKEGAMI*

Received August 31, 1979

The infrared and Raman spectra of five metavanadates, MVO3 (M = NH4, ND4, K, Rb, Cs), have been measured. The observed bands for KVO₃ in the aqueous solution were assigned to the vibrations of the $(VO_3)_n^n$ ionic chain with $C_{2\nu}$ symmetry. The vibrational assignments to the chain in the crystalline salts were given tentatively by taking into consideration a different arrangement of atoms in the chain from that in aqueous solution. The internal vibrations of the ammonium ions in NH₄VO₃ and ND_4VO_3 at 77 and 100 K were also discussed. The rule of alternative inhibition has been adapted to the librations of the ammonium ions at 77 K.

In the previous paper,¹ the far-infrared spectra of five metavanadates, MVO_3 (M = NH₄, ND₄, K, Rb, Cs), were reported with the discussions concerning the bending vibrations of the VO₃ anion chain, the cation translations, and the NH_4^+ librations. It was suggested that these salts have similar force constants for the translational modes of the cations. According to the X-ray analyses of NH_4VO_3 and KVO_3 ,² the unit cell in a crystal with space group $Pmab-D_{2h}^{11}$ contains four MVO₃ molecules including four equivalent cations, and the VO₃ anions constitute a chain arrangement in which the VO₄ groups are tetrahedral. Few vibrational studies for the anion chain are found in the literature.^{3,4}

W. P. Ibid. 1967, 905.

In order to investigate the fundamental vibrations of the anion chain, we measured the infrared and Raman spectra of the powdered salts at room temperature. Since the stereochemical structure of the VO₄ tetrahedral chain in aqueous solution has been assumed to be different from that in crystal,⁵ the spectra of the aqueous solution were also examined for KVO_3 , which is soluble in water. This paper deals with the assignments for these observed bands. Internal motions and librations of the ammonium ions are also discussed for the spectra of NH₄VO₃ and ND₄VO₃ measured at room and low temperatures.

Experimental Section

The materials measured were NH4VO3, ND4VO3, KVO3, RbVO3, and CsVO₃, all of which were prepared as previously reported.¹ Infrared spectra were measured with a Perkin-Elmer Model 125

⁽a) Durig, J. R.; Bucy, W. E.; Carreira, L. A.; Wurrey, C. J. J. Chem. Phys. 1974, 60, 1754. (b) Durig, J. R.; Bucy, W. E.; Wurrey, C. J. J. Chem. Phys. 1974, 60, 3293. (c) Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A. J. Phys. Chem. 1975, 79, 988. (52)

⁽¹⁾

Onodera, S.; Ikegami, Y. Inorg. Chem. 1979, 18, 466. Evans, H. T., Jr. Z. Kristallogr., Kristallgeom., Kristallphys., Kris-(2)tallchem. 1960, 114, 257.

Frederickson, L. D., Jr.; Hausen, D. M. Anal. Chem. 1963, 35, 818. Griffith, W. P.; Wickins, T. D. J. Chem. Soc. A 1966, 1087. Griffith, (4)

Wells, A. F. "Structural Inorganic Chemistry", 4th ed.; Clarendon (5) Press: Oxford, 1975; p 470.

Figure 1. Two possible structures of the $(VO_3)_n^{n-1}$ ions.⁵

Figure 2. Infrared spectra of KVO_3 : a, KVO_3 solution in D_2O (2.2 mol/L, pH 7.8); b, KVO_3 solid (KBr disk and paraffin mull).

infrared spectrophotometer and with a Hitachi FIS-1 far-infrared spectrophotometer. A Kawaguchi Model KR-5 Raman spectrophotometer was used to measure Raman spectra, with 5145- and 4880-Å lines from a argon-ion laser as the exciting line. The powdered salts were directly irradiated to measure the Raman spectra. KBr and Nujol mulling methods were both used to obtain infrared spectra of the salts in solid state. Infrared and Raman spectra of the $(VO_3)_n^{\mu}$ ion were measured for the solution of KVO_3 with the concentration of 2.2 mol/L and pH 7.8 in D₂O and H₂O, respectively. Infrared spectra of the aqueous solution were measured with a polyethylene film cell.

Results and Discussion

Skeletal Vibrations of the VO₃ Anion Chain. Two possible structures for the infinite-chain metavanadate anion are shown in Figure 1.5 According to the X-ray analyses of ammonium and potassium metavanadate crystals, the VO₃ anion groups in a crystal constitute a chain arrangement depicted roughly in Figure 1b. On the other hand, the metavanadates in aqueous solution produce various vanadate ionic species as the function of the total vanadium concentration and the pH.⁶ Existence of a cyclic tetramer or trimer was also proposed by Griffith and Wickins⁴ for the solution with vanadium concentration of 2 mol/L and pH 8.2 on the basis of the Raman spectrum and the infrared spectrum higher than 700 cm⁻¹. In the present study, the infrared and Raman spectra of the metavanadate ion in aqueous solution were measured for the solution prepared by dissolving KVO₃ at room temperature so as to give the concentration of 2.2 mol/L and pH 7.8. The solution thus probably differs from that of Griffith and Wickins, who prepared the solution by boiling NH₄VO₃ with

Figure 3. Raman spectra of KVO₃: a, KVO₃ solution in H_2O (2.2 mol/L, pH 7.8); b, KVO₃ powder.

aqueous potassium hydroxide solution. The infrared and Raman spectra of the KVO_3 solution are shown in Figures 2 and 3, respectively, together with the spectra of the powder.

As seen from Figures 2 and 3, the solution spectra are substantially analogous to those of the crystal, which undergo the factor group splitting by the crystal field, and different from those reported by Griffith and Wickins. Therefore, the metavanadate ion in the present solution is assumed to have either structure a or b in Figure 1. The structure might be chosen in consideration of the vibrational freedom and the selection rule.

The VO₃ chain in Figure 1a is composed of the VO₃ unit groups with C_{2v} symmetry, while that of Figure 1b is constructed by two VO₃ groups with the same symmetry. The vibrational freedom of the VO₃ groups for the arrangement of Figure 1a is written by eq 1 and that for Figure 1b by eq

$$\Gamma_{\rm VO_3} = 3 \, A_1 + B_1 + 2 \, B_2 \tag{1}$$

2, where the longitudinal twisting vibrations of the chain,

$$\Gamma_{2VO_2} = 6 A_1 + 3 A_2 + 5 B_1 + 3 B_2$$
 (2)

belonging to B_2 species, were excluded because the frequencies would be low compared with the skeletal vibrations of the chain. All species are infrared- and Raman-active modes except A_2 species which are infrared inactive, and A_1 species would be polarized. As seen in Figures 2a and 3a, the solution of KVO₃ has six infrared absorption bands and six Raman lines. A Raman line at 860 cm⁻¹ lies hidden behind a strong 945-cm⁻¹ line and is revealed by a polarized spectrum. Three polarized Raman lines at 945, 475, and 205 cm⁻¹ are assigned to A_1 species. Thus, the observed six frequencies are reasonably interpreted by eq 1, and this fact implies that the metavanadate ion in aqueous KVO3 solution has the infinite-chain arrangement shown in Figure 1a. The coincidence of the infrared bands with Raman lines supports the $C_{2\nu}$ symmetric structure of the VO₃ chain. The difference between this result and that of Griffith and Wickins is ascribed to the fact that the cyclic metavanadate ion was formed by boiling ammonium metavanadate with potassium hydroxide solution; otherwise the saturated KVO₃ solution will conserve the chain structure in crystal.

The assignments for the observed frequencies of the KVO_3 solution tabulated in Table I are based on the results of the

⁽⁶⁾ Pope, M. T.; Dale, B. W. Q. Rev., Chem. Soc. 1968, 22, 527.

Infrared and Raman Spectra of Metavanadates

Table I. Vibrational Frequencies (cm⁻¹) and the Assignments for $(VO_3)_n^{n-1}$ Ions in Aqueous Solution

	hain ^c	cyclic tetramer ^a			
Ratnan ^b	IR	assignt	Raman ^b	IR	assignt
945 (p)	920	$A_1 \nu_{VO_2}$ (free)	945 (p)	952	$\nu_{\rm VO_2}$ (sym)
860	820	$B_2 \nu_{VO_2}$ (free)	905	905	$\nu_{\rm VO}$ (asym)
630	640	$B_2 \nu_{VOV}$ (bridged)	630		ring mode
475 (p)	530	$A_1 \nu_{VOV}(bridged)$	540 (p) 490 (p)		ring breathing
345	326	B ₁ δVO ₂			^δ vo,
205 (p)	223		330		ring def
4 Dafa		1:			

^a Reference 4. ^b (p) indicates a polarized line. ^c Present work.

vanadate anions HVO_4^{2-} , $\text{HV}_2\text{O}_7^{3-}$, $\text{V}_2\text{O}_7^{4-}$, and $(\text{VO}_3)_n^{n-}$ reported by Griffith and Wickins.⁴ The free VO₂ stretching frequencies agree with the cyclic metavanadate ion, while the VOV bending frequencies appearing at 205 cm⁻¹ (Raman) and 233 cm⁻¹ (IR) resemble those of $\text{V}_2\text{O}_7^{4-}$ at 288 cm⁻¹ and $\text{HV}_2\text{O}_7^{3-}$ at 210 cm⁻¹.

The crystal structure of KVO3 has an inverse arrangement of two VO_3 groups alternately as shown previously. The space group is D_{2h} , and the unit cell contains four molecules. The site symmetry of the VO₃ chain in the crystal is $C_{2\nu}$, and the fundamental vibration of the chain is given by eq 2. The spectra of Figures 2b and 3b do not give all the frequencies, and 11 Raman lines and 12 infrared bands can be read from the spectra as listed in the first column of Table II. The observed frequencies can be roughly assigned by comparing them with the frequencies observed in aqueous solution, but the exact assignments cannot be given because no spectra of the single crystal have been measured. Since the VO stretching frequencies in solution are close to those in the crystal, as seen in Tables I and II, the bridged VO and free VO bonds of the VO₃ chain in solution have similar bond lengths to those in KVO₃ crystal, in which the bond lengths are 1.80 and 1.66 Å, respectively. The infrared and Raman spectra of other metavanadates are sketched in Figure 4, and the observed frequencies are summarized in Table II. Figure 4 indicates that the spectra in this region are little influenced by the kind of cation, implying the similar VO_3 chain structures in five metavanadate crystals. Another point noticeable in Figure 4 is that almost all of the fundamental vibrations appear correspondingly in both infrared and Raman spectra. Since the rule of alternative inhibition would originally be applied to the skeletal vibrations of the VO₃ chain under the influence of the D_{2h} space group, the release from the inhibition rule should be explained by a significant effect of the C_{2v} site symmetry to the VO_3 anion chain. This may be supported by the fact that the lattice constant in the direction of the long-

Figure 4. Vibrational spectra of the VO_3 chain in five metavanadates. Upward lines show Raman scattering and downward lines show infrared absorption. Length of the bar shows relative intensity of the band.

Figure 5. Infrared spectra of NH₄VO₃ and ND₄VO₃ at 100 K.

Figure 6. Raman spectra of NH₄VO₃ and ND₄VO₃ at 77 K.

Table II.	Observed Freque	encies (cm ⁻¹) an	d Intensisties ^a f	for the VO,	Chain in MVO,	at Room Temp	erature
-----------	-----------------	-------------------------------	-------------------------------	-------------	---------------	--------------	---------

K		Rb		Cs		NH4		ND ₄		
Raman	IR	Raınan	IR	Raman	IR	Raman	IR	Raman	IR	assignt
950 w	960 w		957 w		948 w			· · · · ·)
940 s	935 s 890 w	942 s	935 s 895 w	935 s	920 s 905 w	925 s	935 s 895 w	925 s	940 s 890 w	$\left\langle \nu_{VO_2}(sym)\right\rangle$
910 m	850 s	908 m	863 s	912 m	860 s	895 m	850 s	895 m	845 s	$\nu_{\rm VO}$ (asym)
648 in 520 w	693 s	648 m	685 s	652 m	690 s	643 m	690 s	647 m	690 s	$\nu_{\rm VOV}({\rm asym})$
498 s	495 w	485 s	485 w	475 s	475 w	497 s	495 w	495 s	498 w	WOW(sym)
383 w	385 m	375 w	382 m	375 w	379 m	380 w		375 w	389 w	
362 m	352 w	357 m	347 w	355 w	337 w	342 w		360 w	365 w	δνο
322 m	318 s 262 w	330 m	318 s 267 w	332 w	328 s 269 w	315 w	333 s	330 w	327 s)
230 s	231 w	242 m	238 w	230 m	249 w	255 m	223 w ^b	250 m	220 w ^b	lovov
205 m	219 w	222 s	210 w	222 s	217 w	205 s		205 s)

^a Abbreviations: s = strong, m = medium, w = weak. ^b At 50 K.

Table III.	Observed Internal Frequencies (cm ⁻¹) for the
Ammoniur	1 Ions in NH_4VO_3 and ND_4VO_3

NH ₄ V	/O ₃	ND ₄ V			
Raman ^a	IR ^b	Raınan ^a	IR ^b	assignt ^c	
3050	3190	2220	2340	ν,	
	2980		2180	$\nu_{2} + \nu_{4}$	
	2800		2100	$2\nu_{A}$	
2920		2100		ν_1	
1650		1180		v,	
1440		1075		-	
1420 1370	1412	1060	1067	ν_4	

^a At 77 K. ^b At 100 K. ^c Key: ν_1 , NH symmetrical stretching; ν_2 , HNH doubly degenerate bending; ν_3 , NH triply degenerate stretching; ν_4 , HNH triply degenerate bending.

itudinal chain axis (a axis) is little affected by the cation for four metavanadate crystals.²

Internal Vibrations of the NH4⁺ Ion in NH4VO3. Infrared and Raman spectra of NH₄VO₃ and ND₄VO₃ in the frequency region where the internal vibrations are expected are shown in Figures 5 and 6. The observed frequencies are listed in Table III. It may be assumed that the factor group splitting of a tetrahedral NH₄⁺ ion removes all the vibrational degeneracies. The Raman spectrum exhibits the splitting lines of ν_4 vibration (F₂), but no splittings are observed for ν_3 (F₂) and $\nu_2(E)$ in both Raman and infrared spectra. It has been pointed out by the study of X-ray analyses² that the thermal motion of the NH_4^+ ion in NH_4VO_3 is more constrained than that of the K^+ ion in KVO_3 , leading to the suggestion that there is hydrogen bonding between the NH_4^+ ion and the VO_3 groups in the anion chain. Existence of the hydrogen bond is supported by the comparatively high librational frequency of the ion at 375 cm⁻¹ and also by the fact that the potential barrier of the restricted rotation (5.0 kcal/mol^7) is higher than those of other ammonium salts,⁸ such as NH₄ClO₄ (0.1–0.2 kcal/mol) and NH₄NO₃ (2.4 kcal/mol). The ν_1 and ν_3 frequencies (2920 and 3190 cm⁻¹, respectively) lower than those of NH_4ClO_4 (3206 and 3290 cm⁻¹) and NH_4NO_3 (3130 and 3250 cm⁻¹) can be explained by the formation of the N-H-O hydrogen bonding.

The NH_4^+ and ND_4^+ Librations. It was suggested in our previous paper¹ that the librational infrared absorption at 362 cm⁻¹ at room temperature was understood as an average of NH_4^+ librations about C_2 and C_3 rotational axes. The corresponding band of ND_4^+ ion has been observed at 267 cm⁻¹. These frequencies are located in the region of the skeletal bending vibrations, so that the assignments in this region are often confused. Figure 7 shows the Raman spectra of NH_4 - VO_3 and ND_4VO_3 at room and low temperatures. Both spectra of NH_4VO_3 and ND_4VO_3 at room temperature have

604.

Figure 7. Raman spectra of NH_4VO_3 and ND_4VO_3 at room temperature and 77 K. The peaks denoted by asterisks in the spectra are unfiltered argon II laser fluorescence lines.

broad bands around 360 and 220 cm⁻¹, respectively. The broad band at 360 cm⁻¹ is probably due to the superposition of NH₄⁺ libration and VO₂ bending vibration and that at 220 cm⁻¹ consists of ND₄ libration and VOV bending vibration. At 77 K, these broad bands disappeared, while the infrared librational absorption at 362 cm⁻¹ shifted gradually toward 375 cm⁻¹ with a lowering of the temperature below 50 K, accompanying an increase in intensity. Thus, the rule of alternative inhibition can be adapted to the NH₄⁺ and ND₄⁺ librations as lattice vibrations at 77 K. Four NH₄⁺ ions are situated at the C₂ site in the unit cell. Under the influence of D_{2h} space group, the librations of the ion are split into the 12 modes

$$\Gamma_{\rm NH4^+}(\rm lib) = A_g + 2 B_{1g} + B_{2g} + 2 B_{3g} + A_u + 2 B_{1u} + B_{2u} + 2 B_{3u} (3)$$

where B_u species are infrared active and A_g and B_g are Raman-active modes. Therefore, the twofold rotation (C_2 libration) appearing in the infrared spectra at 375 cm⁻¹ in NH₄VO₃ will be any one of the B_{1u} , B_{2u} , and B_{3u} species which are inactive in the Raman spectrum. A rise in temperature causes the loosening in the crystal field of D_{2h} , leading to an appearance of the C_3 librations. The librations thus become active modes in both infrared and Raman spectra at room temperature.

Registry No. NH₄VO₃, 7803-55-6; ND₄VO₃, 68683-01-2; KVO₃, 13769-43-2; RbVO₃, 13597-45-0; CsVO₃, 14644-55-4.

⁽⁷⁾ Peternelj, J.; Valic, M. I.; Pintar, M. M. Physica (Utrecht) 1971, 54,

⁽⁸⁾ Ebisuzaki, Y. J. Chem. Phys. 1974, 61, 3170.